Efficient Built-in Self Repair Analyzer for Embedded word oriented SRAM and DRAM Memories with selectable redundancy

نویسنده

  • P. Neelima
چکیده

This paper proposes Built-In Self-Repair Analyzer (BISR) strategy with Redundancy which is an effective yieldenhancement strategy for embedded memories. It consists of a Built-In Self-Test (BIST) module, a Built-In Address-Analysis (BIAA) module and a Multiplexer (MUX) module. The BISR is designed flexible so that it can provide four operation modes to SRAM users. The feature of the proposed BISR strategy is that it can save each fault address for only once.To achieve a high repair speedin BIAA module, fault addresses and redundant ones form a one-to-one mapping. Besides, instead of adding spare words, rows, columns or blocks in the SRAMs, users can select normal words as redundancy. This paper proposes BISR strategy for DRAM also. Advantage of Proposed Work is that the BISR can perform bit oriented and word oriented memory analyzing and also it supports self-repair strategy with selectable redundancy. In the existing paper BISR is implemented for only SRAM, whereas the proposed paper extended it to DRAM. We design word oriented SRAM and DRAM and implement BISR analyzer with selectable redundancy. The selectable redundancy will provide the advantage of low area, low complexity and flexible to compiler designs. KeywordsSRAM; DRAM; Built-In Self-Repair (BISR); Built-In Self-Test (BIST); Built-In Address-Analysis (BIAA); Multiplexer (MUX); compiler.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Built-in Self-repair Strategy for Embedded Sram with Selectable Redundancy

Built-In Self-Repair (BISR) with Redundancy is an effective yield-enhancement strategy for embedded memories. This paper proposes an efficient BISR strategy which consists of a Built-In Self-Test (BIST) module, a Built-In Address-Analysis (BIAA) module and a Multiplexer (MUX) module. The BISR is designed flexible that it can provide four operation modes to SRAM users. Each fault address can be ...

متن کامل

An Advanced and more Efficient Built-in Self-Repair Strategy for Embedded SRAM with Selectable Redundancy

Built-in self-test (BIST) refers to those testing techniques where additional hardware is added to a design so that testing is accomplished without the aid of external hardware. Usually, a pseudo-random generator is used to apply test vectors to the circuit under test and a data compactor is used to produce a signature. To increase the reliability and yield of embedded memories, many redundancy...

متن کامل

FPGA Implementation of SRAM Memory Testing Technique Using BISR Scheme

As RAM is major component in present day SOC, by Improving the yield of RAM improves the yield of SOC. So the repairable memories play a vital role in improving the yield of chip .Built-in self-repair (BISR) technique has been widely used to repair embedded random access memories (RAMs). If each repairable RAM uses one self contained BISR circuit (Dedicated BISR scheme), then the area cost of B...

متن کامل

A Built-In Self-Repair Scheme for Semiconductor Memories with 2-D Redundancy

Embedded memories are among the most widely used cores in current system-on-chip (SOC) implementations. Memory cores usually occupy a significant portion of the chip area, and dominate the manufacturing yield of the chip. Efficient yield-enhancement techniques for embedded memories thus are important for SOC. In this paper we present a built-in self-repair (BISR) scheme for semiconductor memori...

متن کامل

Embedded Memory Test Strategies and Repair

The demand of self-testing proportionally increases with memory size in System on Chip (SoC). SoC architecture normally occupies the majority of its area by memories. Due to increase in density of embedded memories, there is a need of self-testing mechanism in SoC design. Therefore, this research study focuses on this problem and introduces a smooth solution for self-testing.  In the proposed m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014